2 edition of **Riemann surfaces** found in the catalog.

Riemann surfaces

Lipman Bers

- 361 Want to read
- 3 Currently reading

Published
**1958**
by Courant Institute of Mathematical Sciences, New York University in New York
.

Written in English

**Edition Notes**

Lectures delivered 1957-58.

Statement | Lipman Bers ; notes by E. Rodlitz and R. Pollack. |

Contributions | Rodlitz, E., Pollack, R. |

ID Numbers | |
---|---|

Open Library | OL13863325M |

pact Riemann surfaces can be obtained as quotients ∆/G. Polyhedral surfaces as Riemann surfaces One can build a Riemann surface gluing together pieces of the complex plane C. Consider a ﬁnite set of disjoint polygons Fiand identify isometrically pairs of edges in such a way that the result is a compact oriented polyhedral surface P. Lectures on Reimann Surfaces: 81 (Graduate Texts in Mathematics) by Otto Forster and a great selection of related books, art and collectibles available now at - Lectures on Riemann Surfaces by Forster, Otto - AbeBooks.

Riemann surfaces --Existence theorems --Compact Riemans surfaces --Uniformization --Automorphisms of compact surfaces --elementary theory --Theta functions --Examples. Series Title: Graduate texts in mathematics, Introduction to Complex Variables. These are the sample pages from the textbook, 'Introduction to Complex Variables'. This book covers the following topics: Complex numbers and inequalities, Functions of a complex variable, Mappings, Cauchy-Riemann equations, Trigonometric and hyperbolic functions, Branch points and branch cuts, Contour integration, Sequences and .

COVID Resources. Reliable information about the coronavirus (COVID) is available from the World Health Organization (current situation, international travel).Numerous and frequently-updated resource results are available from this ’s WebJunction has pulled together information and resources to assist library staff as they consider how to handle . 1. Green functions on Riemann surfaces 2. Hyperbolic Riemann surfaces admit Green functions 3. Problems Chapter The uniformization theorem 1. The statement for simply connected surfaces 2. Hyperbolic, simply connected, surfaces 3. Parabolic, simply connected, surfaces Chapter Hints and Solutions Chapter File Size: 1MB.

You might also like

"This book may be recommended to readers of all levels, from beginners to specialists." -- Mathematical Reviews "This compact book is a fabulous contribution to the literature on the gorgeous and important subject of Riemann surfaces The book is simply wonderful." - /5(4).

If all you care about is Riemann surfaces, I'd go with Forster's book. $\endgroup$ – Potato May 30 '13 at 5 $\begingroup$ I know Forster's book quite well, having taught out of a good portion of it a few times. Riemann Surfaces (Oxford Graduate Texts in Mathematics Book 22) Simon Donaldson.

out of 5 stars 8. Kindle Edition. $ Lectures on Riemann Surfaces (Graduate Texts in Riemann surfaces book Book 81) Otto Forster. out of 5 stars 2. Kindle Edition. $/5(1). Other articles where Riemann surface is discussed: analysis: Analysis in higher dimensions: was the concept of a Riemann surface.

The complex numbers can be viewed as a plane (see Fluid flow), so a function of a complex variable can be viewed as a function on the plane.

Riemann’s insight was that other surfaces can also be provided with complex coordinates, and. Frances Kirwan's book Complex Algebraic Curves has two really nice chapters on Riemann Surfaces and over all the level of the book is pretty decent to start with.

The book is intended to be accessible to advanced undergraduates so perhaps not as advanced as you'd like, but it is a good reference nonetheless.

Riemann Surfaces book. Read reviews from world’s largest community for readers. It is gratifying to learn that there is new life in an old field that has 5/5(5).

It is gratifying to learn that there is new life in an old field that has been at the center of one's existence for over a quarter of a century.

It is particularly pleasing that the subject of Riemann surfaces has attracted the attention of a new generation of mathematicians from (newly) adjacent.

We hope that non-mathematicians as well as mathematicians (working in nearby areas to the central topic of this book) will also learn part of this subject for the sheer beauty and elegance of the material (work of Weierstrass, Jacobi, Riemann, Hilbert, Weyl) and as healthy exposure to the way (some) mathematicians write about mathematics.

It is gratifying to learn that there is new life in an old field that has been at the center of one's existence for over a quarter of a century.

It is particularly pleasing that the subject of Riemann surfaces has attracted the attention of a new generation of mathematicians from (newly) adjacent fields (for example, those interested in hyperbolic manifolds and iterations of rational maps) 5/5(1).

In this book we present the theory of Riemann surfaces and its many dif ferent facets. We begin from the most elementary aspects and try to bring the reader up to the frontier of present-day research. We treat both open and closed surfaces in this. Compact Riemann Surfaces book.

Read reviews from world’s largest community for readers. Although Riemann surfaces are a time-honoured field, this book is 4/5(3). The theory of Riemann surfaces occupies a very special place in mathematics. It is a culmination of much of traditional calculus, making surprising connections with geometry and arithmetic.

It is an extremely useful part of mathematics, knowledge of which is needed by specialists in many other fields. It provides a model for a large number of more recent developments in areas Author: Simon Donaldson. Riemann surfaces There are some surfaces which we are interested in that were studied by Riemann, which surpris-ingly have been named Riemann surfaces.

We begin with a deﬁnition of such surfaces. Deﬁnition A Hausdorﬀ connected topological space X is a Riemann surface if there exists a family f(`j;Uj): j 2 JgFile Size: KB.

Stability, Riemann Surfaces, Conformal Mappings is one of the great eBooks available to download from our website. This Complex Functions Theory a-3 text is the third e-book in a series which has previously characterized analytic functions by their complex differentiability and proved Cauchy’s Integral Theorem, as well as provided /5(17).

The special role of compact Riemann surfaces is explained, and their connection with algebraic equations is established. The book concludes with three chapters devoted to three major results: the Hodge decomposition theorem, the Riemann-Roch theorem, and the uniformization theorem.

This book grew out of lectures on Riemann surfaces which the author gave at the universities of Munich, Regensburg and Munster.

Its aim is to give an introduction to this rich and beautiful subject, while presenting methods from the theory of complex manifolds which, in the special case of one complex variable, turn out to be particularly elementary and transparent. Hurwitz theory, the study of analytic functions among Riemann surfaces, is a classical field and active research area in algebraic geometry.

The subject's interplay between algebra, geometry, topology and analysis is a beautiful example of the interconnectedness of by: 6.

The theory of Riemann surfaces occupies a very special place in mathematics. It is a culmination of much of traditional calculus, making surprising connections with geometry and arithmetic. It is an extremely useful part of mathematics, knowledge of which is needed by specialists in.

Riemann surfaces and holomorphic maps 27 continuation” which is a fundamental motivation for Riemann surface theory. One naturally encounters holomorphic functions in various ways. One way is through power series, say f(z).

The theory of Riemann surfaces occupies a very special place in mathematics. It is a culmination of much of traditional calculus, making surprising connections with geometry and arithmetic.

It is an extremely useful part of mathematics, knowledge of which is needed by specialists in many other fields. It provides a model for a large number of more recent developments in areas.

Concrete Riemann Surfaces Historically, Riemann surfaces arose as graphs of analytic functions, with multiple values, de ned over domains in C. Inspired by this, we now give a precise de nition of a concrete Riemann surface; but we need a preliminary notion.

5.Georg Friedrich Bernhard Riemann (German: [ˈɡeːɔʁk ˈfʁiːdʁɪç ˈbɛʁnhaʁt ˈʁiːman] (); 17 September – 20 July ) was a German mathematician who made contributions to analysis, number theory, and differential the field of real analysis, he is mostly known for the first rigorous formulation of the integral, the Riemann integral, and his work on Fourier Alma mater: University of Göttingen, University.

Defines Riemann surfaces and holomorphic maps with numerous examples, presents material on divisors, functions, and maps, offers proofs of the Riemann-Roch theorem and Serre Duality, and discusses points of linear systems.

Introduces sheaves and cohomology, and includes a notation index. Annotation c. Book News, Inc., Portland, OR ()Price: $